首页 Redis 基础知识总结
文章
取消

Redis 基础知识总结

概念和基础

Redis是一款内存高速缓存数据库。Redis全称为:Remote Dictionary Server(远程数据服务),使用C语言编写,Redis是一个key-value存储系统(键值存储系统),支持丰富的数据类型,如:String、list、set、zset、hash。 Redis是一种支持key-value等多种数据结构的存储系统。可用于缓存,事件发布或订阅,高速队列等场景。支持网络,提供字符串,哈希,列表,队列,集合结构直接存取,基于内存,可持久化。

为什么用 Redis

  1. 读写性能优异,Redis能读的速度是110000次/s,写的速度是81000次/s (测试条件见下一节)。
  2. 数据类型丰富,Redis支持二进制案例的 String, List, Hash, SetOrdered Set 数据类型操作。
  3. 原子性,Redis的所有操作都是原子性的,同时 Redis 还支持对几个操作全并后的原子性执行。
  4. 丰富的特性,Redis 支持 publish/subscribe, 通知, key 过期等特性。
  5. 持久化Redis,支持 RDB, AOF 等持久化方式。
  6. 发布订阅,Redis 支持发布/订阅模式。
  7. 分布式,Redis Cluster。

Redis 为什么快

  1. 基于内存的操作
  2. 单线程,减少线程上下文的切换,6.0 之前网络 IO 和命令处理均采用单线程,6.0 之后网络 IO 多线程,命令处理依旧单线程。
  3. 非阻塞IO, IO多路复用,Redis采用epoll做为I/O多路复用技术的实现,再加上Redis自身的事件处理模型将epoll中的连接,读写,关闭都转换为了时间,不在I/O上浪费过多的时间。
  4. 计算向数据移动,丰富的数据类型以及对数据类型支持的丰富操作命令,无需取出全部数据进行处理。

那些场景用 Redis

  1. 热点数据的缓存缓存是Redis最常见的应用场景,之所有这么使用,主要是因为Redis读写性能优异。

  2. 限时业务的运用redis中可以使用expire命令设置一个键的生存时间,到时间后redis会删除它。利用这一特性可以运用在限时的优惠活动信息、手机验证码等业务场景。

  3. 计数器相关问题redis由于incrby命令可以实现原子性的递增,所以可以运用于高并发的秒杀活动、分布式序列号的生成、具体业务还体现在比如限制一个手机号发多少条短信、一个接口一分钟限制多少请求、一个接口一天限制调用多少次等等。

  4. 分布式锁,这个主要利用 redis 的 setnx 命令进行,setnx:”set if not exists” 就是如果不存在则成功设置缓存同时返回1,否则返回0。

  5. 延时操作,比如在订单生产后我们占用了库存,10分钟后去检验用户是否真正购买,如果没有购买将该单据设置无效,同时还原库存。 由于redis自2.8.0之后版本提供Keyspace Notifications功能,允许客户订阅Pub/Sub频道,以便以某种方式接收影响Redis数据集的事件。 所以我们对于上面的需求就可以用以下解决方案,我们在订单生产时,设置一个key,同时设置10分钟后过期, 我们在后台实现一个监听器,监听key的实效,监听到key失效时将后续逻辑加上。当然我们也可以利用rabbitmq、activemq等消息中间件的延迟队列服务实现该需求。

  6. 排行榜相关问题关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。

  7. 点赞、好友等相互关系的存储 Redis 利用集合的一些命令,比如求交集、并集、差集等。在微博应用中,每个用户关注的人存在一个集合中,就很容易实现求两个人的共同好友功能。

  8. 简单队列,由于 Redis 有 list push 和 list pop 这样的命令,所以能够很方便的执行队列操作。

数据类型

Redis 数据类型

结构类型结构存储的值结构的读写能力
String字符串可以是字符串、整数或浮点数对整个字符串或字符串的一部分进行操作;
对整数或浮点数进行自增或自减操作;
List列表一个链表,链表上的每个节点都包含一个字符串对链表的两端进行push和pop操作,读取单个或多个元素;
根据值查找或删除元素;
Set集合包含字符串的无序集合字符串的集合,包含基础的方法有看是否存在添加、获取、删除;
还包含计算交集、并集、差集等
Hash散列包含键值对的无序散列表包含方法有添加、获取、删除单个元素
Zset有序集合和散列一样,用于存储键值对字符串成员与浮点数分数之间的有序映射;
元素的排列顺序由分数的大小决定;
包含方法有添加、获取、删除单个元素以及根据分值范围或成员来获取元素

String

String是redis中最基本的数据类型,一个key对应一个value。String类型是二进制安全的,意思是 redis 的 string 可以包含任何数据。如数字,字符串,jpg图片或者序列化的对象。

命令简述使用
GET获取存储在给定键中的值GET name
SET设置存储在给定键中的值SET name value
DEL删除存储在给定键中的值DEL name
INCR将键存储的值加1INCR key
DECR将键存储的值减1DECR key
INCRBY将键存储的值加上整数INCRBY key amount
DECRBY将键存储的值减去整数DECRBY key amount

更多命令参考:Redis-String

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
127.0.0.1:6379> set hello world
OK
127.0.0.1:6379> get hello
"world"
127.0.0.1:6379> del hello
(integer) 1
127.0.0.1:6379> get hello
(nil)
127.0.0.1:6379> set counter 2
OK
127.0.0.1:6379> get counter
"2"
127.0.0.1:6379> incr counter
(integer) 3
127.0.0.1:6379> get counter
"3"
127.0.0.1:6379> incrby counter 100
(integer) 103
127.0.0.1:6379> get counter
"103"
127.0.0.1:6379> decr counter
(integer) 102
127.0.0.1:6379> get counter
"102"

实战场景:

  • 缓存: 经典使用场景,把常用信息,字符串,图片或者视频等信息放到redis中,redis作为缓存层,mysql做持久化层,降低mysql的读写压力。
  • 计数器:redis是单线程模型,一个命令执行完才会执行下一个,同时数据可以一步落地到其他的数据源。
  • session:常见方案spring session + redis实现session共享。

List

Redis中的List其实就是链表(Redis用双端链表实现List)。使用List结构,我们可以轻松地实现最新消息排队功能(比如新浪微博的TimeLine)。List的另一个应用就是消息队列,可以利用List的 PUSH 操作,将任务存放在List中,然后工作线程再用 POP 操作将任务取出进行执行。

命令简述使用
RPUSH将给定值推入到列表右端RPUSH key value
LPUSH将给定值推入到列表左端LPUSH key value
RPOP从列表的右端弹出一个值,并返回被弹出的值RPOP key
LPOP从列表的左端弹出一个值,并返回被弹出的值LPOP key
LRANGE获取列表在给定范围上的所有值LRANGE key 0 -1
LINDEX通过索引获取列表中的元素。你也可以使用负数下标,以 -1 表示列表的最后一个元素, -2 表示列表的倒数第二个元素,以此类推。LINDEX key index

更多命令参考:Redis-List

1
2
3
4
5
6
7
8
9
10
11
12
127.0.0.1:6379> lpush mylist 1 2 ll ls mem
(integer) 5
127.0.0.1:6379> lrange mylist 0 -1
1) "mem"
2) "ls"
3) "ll"
4) "2"
5) "1"
127.0.0.1:6379> lindex mylist -1
"1"
127.0.0.1:6379> lindex mylist 10        # index不在 mylist 的区间范围内
(nil)

使用列表的技巧:

  • lpush+lpop=Stack(栈)
  • lpush+rpop=Queue(队列)
  • lpush+ltrim=Capped Collection(有限集合)
  • lpush+brpop=Message Queue(消息队列)

实战场景:

  • 微博TimeLine: 有人发布微博,用lpush加入时间轴,展示新的列表信息。
  • 消息队列。

Set

Redis 的 Set 是 String 类型的无序集合。集合成员是唯一的,这就意味着集合中不能出现重复的数据。Redis 中集合是通过哈希表实现的,所以添加,删除,查找的复杂度都是 O(1)。

命令简述使用
SADD向集合添加一个或多个成员SADD key value
SCARD获取集合的成员数SCARD key
SMEMBERS返回集合中的所有成员SMEMBERS key member
SISMEMBER判断 member 元素是否是集合 key 的成员SISMEMBER key member

更多命令参考:Redis-Set

1
2
3
4
5
6
7
8
127.0.0.1:6379> sadd myset hao hao1 xiaohao hao
(integer) 3
127.0.0.1:6379> smembers myset
1) "xiaohao"
2) "hao1"
3) "hao"
127.0.0.1:6379> sismember myset hao
(integer) 1

实战场景:

  • 标签(tag),给用户添加标签,或者用户给消息添加标签,这样有同一标签或者类似标签的可以给推荐关注的事或者关注的人。
  • 点赞,或点踩,收藏等,可以放到set中实现。

Hash

Redis hash 是一个 string 类型的 field(字段) 和 value(值) 的映射表,hash 特别适合用于存储对象。

命令简述使用
HSET添加键值对HSET hash-key sub-key1 value1
HGET获取指定散列键的值HGET hash-key key1
HGETALL获取散列中包含的所有键值对HGETALL hash-key
HDEL如果给定键存在于散列中,那么就移除这个键HDEL hash-key sub-key1

更多命令参考:Redis-Hash

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
127.0.0.1:6379> hset user name1 hao
(integer) 1
127.0.0.1:6379> hset user email1 hao@163.com
(integer) 1
127.0.0.1:6379> hgetall user
1) "name1"
2) "hao"
3) "email1"
4) "hao@163.com"
127.0.0.1:6379> hget user user
(nil)
127.0.0.1:6379> hget user name1
"hao"
127.0.0.1:6379> hset user name2 xiaohao
(integer) 1
127.0.0.1:6379> hset user email2 xiaohao@163.com
(integer) 1
127.0.0.1:6379> hgetall user
1) "name1"
2) "hao"
3) "email1"
4) "hao@163.com"
5) "name2"
6) "xiaohao"
7) "email2"
8) "xiaohao@163.com"

实战场景:

  • 缓存: 能直观,相比string更节省空间,的维护缓存信息,如用户信息,视频信息等。

ZSet

Redis 有序集合和集合一样也是 string 类型元素的集合,且不允许重复的成员。不同的是每个元素都会关联一个 double 类型的分数。redis 正是通过分数来为集合中的成员进行从小到大的排序。

有序集合的成员是唯一的, 但分数(score)却可以重复。有序集合是通过两种数据结构实现:

  1. 压缩列表(ziplist): ziplist是为了提高存储效率而设计的一种特殊编码的双向链表。它可以存储字符串或者整数,存储整数时是采用整数的二进制而不是字符串形式存储。它能在O(1)的时间复杂度下完成list两端的push和pop操作。但是因为每次操作都需要重新分配ziplist的内存,所以实际复杂度和ziplist的内存使用量相关。

  2. 跳跃表(zSkiplist): 跳跃表的性能可以保证在查找,删除,添加等操作的时候在对数期望时间内完成,这个性能是可以和平衡树来相比较的,而且在实现方面比平衡树要优雅,这是采用跳跃表的主要原因。跳跃表的复杂度是O(log(n))。

命令简述使用
ZADD将一个带有给定分值的成员添加到有序集合里面ZADD zset-key 178 member1
ZRANGE根据元素在有序集合中所处的位置,从有序集合中获取多个元素ZRANGE zset-key 0-1 withccores
ZREM如果给定元素成员存在于有序集合中,那么就移除这个元素ZREM zset-key member1

更多命令参考:Redis-Hash

1
2
3
4
5
6
7
127.0.0.1:6379> zadd myscoreset 100 hao 90 xiaohao
(integer) 2
127.0.0.1:6379> ZRANGE myscoreset 0 -1
1) "xiaohao"
2) "hao"
127.0.0.1:6379> ZSCORE myscoreset hao
"100"

实战场景:

  • 排行榜:有序集合经典使用场景。例如小说视频等网站需要对用户上传的小说视频做排行榜,榜单可以按照用户关注数,更新时间,字数等打分,做排行。

HyperLogLog

Redis HyperLogLog 是用来做基数统计的算法,HyperLogLog 的优点是,在输入元素的数量或者体积非常非常大时,计算基数所需的空间总是固定 的、并且是很小的。

在 Redis 里面,每个 HyperLogLog 键只需要花费 12 KB 内存,就可以计算接近 2^64 个不同元素的基 数。这和计算基数时,元素越多耗费内存就越多的集合形成鲜明对比。 但是,因为 HyperLogLog 只会根据输入元素来计算基数,而不会储存输入元素本身,所以 HyperLogLog 不能像集合那样,返回输入的各个元素。

什么是基数?比如数据集 {1, 3, 5, 7, 5, 7, 8}, 那么这个数据集的基数集为 {1, 3, 5 ,7, 8}, 基数(不重复元素)为5。 基数估计就是在误差可接受的范围内,快速计算基数。

HyperLogLogs 基数统计用来解决什么问题?这个结构可以非常省内存的去统计各种计数,比如注册 IP 数、每日访问 IP 数、页面实时UV、在线用户数,共同好友数等。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# 创建第一组元素
127.0.0.1:6379> pfadd key1 a b c d e f g h i
(integer) 1
# 统计元素的基数数量
127.0.0.1:6379> pfcount key1					
(integer) 9
# 创建第二组元素
127.0.0.1:6379> pfadd key2 c j k l m e g a
(integer) 1
127.0.0.1:6379> pfcount key2
(integer) 8
# 合并两组:key1 key2 -> key3 并集
127.0.0.1:6379> pfmerge key3 key1 key2
OK
127.0.0.1:6379> pfcount key3
(integer) 13

Bitmap

Bitmap 即位图数据结构,都是操作二进制位来进行记录,只有0 和 1 两个状态。

用来解决什么问题?比如:统计用户信息,活跃,不活跃! 登录,未登录! 打卡,不打卡! 两个状态的,都可以使用 Bitmaps!如果存储一年的打卡状态需要多少内存呢? 365 天 = 365 bit 1字节 = 8bit 46 个字节左右!相关命令使用使用bitmap 来记录 周一到周日的打卡! 周一:1 周二:0 周三:0 周四:1 ……

1
2
3
4
5
6
7
8
9
10
11
12
13
14
127.0.0.1:6379> setbit sign 0 1
(integer) 0
127.0.0.1:6379> setbit sign 1 1
(integer) 0
127.0.0.1:6379> setbit sign 2 0
(integer) 0
127.0.0.1:6379> setbit sign 3 1
(integer) 0
127.0.0.1:6379> setbit sign 4 0
(integer) 0
127.0.0.1:6379> setbit sign 5 0
(integer) 0
127.0.0.1:6379> setbit sign 6 1
(integer) 0

查看某一天是否有打卡:

1
2
3
4
127.0.0.1:6379> getbit sign 3
(integer) 1
127.0.0.1:6379> getbit sign 5
(integer) 0

统计操作,统计 打卡的天数:

1
2
3
# 统计这周的打卡记录,就可以看到是否有全勤!
127.0.0.1:6379> bitcount sign 
(integer) 3

Geospatial Indices

这个功能可以推算地理位置的信息: 两地之间的距离, 方圆几里的人。

命令简述使用
geoadd添加地理位置GEOADD key [NX|XX] [CH] longitude latitude member [longitude lat]
geopos获取指定的成员的经度和纬度geopos key member [member …]
geodist返回由排序集表示的地理空间索引中两个成员之间的距离GEODIST key member1 member2 [M | KM | FT | MI]
georadius附近的人 ==> 获得所有附近的人的地址, 定位, 通过半径来查询GEORADIUS key longitude latitude radius <M | KM | FT | MI> [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count [ANY]] [ASC | DESC] [STORE key] [STOREDIST key]
georadiusbymember显示与指定成员一定半径范围内的其他成员GEORADIUSBYMEMBER key member radius <M | KM | FT | MI> [WITHCOORD] [WITHDIST] [WITHHASH] [COUNT count [ANY]] [ASC | DESC] [STORE key] [STOREDIST key]

更多命令参考:Redis-Geospatial Indices

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# 添加地理位置
127.0.0.1:6379> geoadd china:city 118.76 32.04 manjing 112.55 37.86 taiyuan 123.43 41.80 shenyang
(integer) 3
127.0.0.1:6379> geoadd china:city 144.05 22.52 shengzhen 120.16 30.24 hangzhou 108.96 34.26 xian
(integer) 3

# 获取指定的成员的经度和纬度
127.0.0.1:6379> geopos china:city taiyuan manjing
1) 1) "112.54999905824661255"
   1) "37.86000073876942196"
2) 1) "118.75999957323074341"
   1) "32.03999960287850968"

# geodist
127.0.0.1:6379> geodist china:city taiyuan shenyang m
"1026439.1070"
127.0.0.1:6379> geodist china:city taiyuan shenyang km
"1026.4391"

# 附近的人 ==> 获得所有附近的人的地址, 定位, 通过半径来查询
127.0.0.1:6379> georadius china:city 110 30 1000 km	以 100,30 这个坐标为中心, 寻找半径为1000km的城市
1) "xian"
2) "hangzhou"
3) "manjing"
4) "taiyuan"
127.0.0.1:6379> georadius china:city 110 30 500 km
1) "xian"
127.0.0.1:6379> georadius china:city 110 30 500 km withdist
1) 1) "xian"
   2) "483.8340"
127.0.0.1:6379> georadius china:city 110 30 1000 km withcoord withdist count 2
1) 1) "xian"
   2) "483.8340"
   3) 1) "108.96000176668167114"
      2) "34.25999964418929977"
2) 1) "manjing"
   2) "864.9816"
   3) 1) "118.75999957323074341"
      2) "32.03999960287850968"

# 显示与指定成员一定半径范围内的其他成员
127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km
1) "manjing"
2) "taiyuan"
3) "xian"
127.0.0.1:6379> georadiusbymember china:city taiyuan 1000 km withcoord withdist count 2
1) 1) "taiyuan"
   2) "0.0000"
   3) 1) "112.54999905824661255"
      2) "37.86000073876942196"
2) 1) "xian"
   2) "514.2264"
   3) 1) "108.96000176668167114"
      2) "34.25999964418929977"

核心知识

持久化

为什么需要持久化?首先 redis 是内存数据库,数据存放在内存中,如果服务器异常宕机,内存中的数据便会丢失,如果是缓存则会有大量请求到达数据库,对数据库造成压力,甚至崩溃;如果我们是用 redis 作为数据库使用,数据丢失则是一个不可接受的问题。因此我们需要对数据进行持久化以备数据丢失时进行恢复。

数据持久化有两种方式:

  1. RDB,能够在指定的时间间隔能对你的数据进行快照存储。
  2. AOF,记录每次对服务器写的操作,当服务器重启的时候会重新执行这些命令来恢复原始的数据。

你也可以同时开启两种持久化方式, 在这种情况下, 当redis重启的时候会优先载入AOF文件来恢复原始的数据,因为在通常情况下AOF文件保存的数据集要比RDB文件保存的数据集要完整。

RDB

优点
  • RDB是一个非常紧凑的文件,它保存了某个时间点得数据集,非常适用于数据集的备份,比如你可以在每个小时报保存一下过去24小时内的数据,同时每天保存过去30天的数据,这样即使出了问题你也可以根据需求恢复到不同版本的数据集.
  • RDB是一个紧凑的单一文件,很方便传送到另一个远端数据中心或者亚马逊的S3(可能加密),非常适用于灾难恢复.
  • RDB在保存RDB文件时父进程唯一需要做的就是fork出一个子进程,接下来的工作全部由子进程来做,父进程不需要再做其他IO操作,所以RDB持久化方式可以最大化redis的性能.
  • 与AOF相比,在恢复大的数据集的时候,RDB方式会更快一些.
缺点
  • 如果你希望在redis意外停止工作(例如电源中断)的情况下丢失的数据最少的话,那么RDB不适合你.虽然你可以配置不同的save时间点(例如每隔5分钟并且对数据集有100个写的操作),是Redis要完整的保存整个数据集是一个比较繁重的工作,你通常会每隔5分钟或者更久做一次完整的保存,万一在Redis意外宕机,你可能会丢失几分钟的数据.
  • RDB 需要经常fork子进程来保存数据集到硬盘上,当数据集比较大的时候,fork的过程是非常耗时的,可能会导致Redis在一些毫秒级内不能响应客户端的请求.如果数据集巨大并且CPU性能不是很好的情况下,这种情况会持续1秒,AOF也需要fork,但是你可以调节重写日志文件的频率来提高数据集的耐久度.
触发方式
  1. 手动触发

    1. save 命令:阻塞当前Redis服务器,直到RDB过程完成为止,对于内存 比较大的实例会造成长时间阻塞,线上环境不建议使用。
    2. bgsave命令:Redis进程执行fork操作创建子进程,RDB持久化过程由子 进程负责,完成后自动结束。阻塞只发生在fork阶段,一般时间很短,bgsave流程图如下所示
  2. 自动触发,在以下4种情况时会自动触发

    1. redis.conf中配置save m n,即在m秒内有n次修改时,自动触发bgsave生成rdb文件;
    2. 主从复制时,从节点要从主节点进行全量复制时也会触发bgsave操作,生成当时的快照发送到从节点;
    3. 执行debug reload命令重新加载redis时也会触发bgsave操作;
    4. 默认情况下执行shutdown命令时,如果没有开启aof持久化,那么也会触发bgsave操作;

AOF

优点
  • 使用AOF 会让你的Redis更加耐久: 你可以使用不同的fsync策略:无fsync,每秒fsync,每次写的时候fsync.使用默认的每秒fsync策略,Redis的性能依然很好(fsync是由后台线程进行处理的,主线程会尽力处理客户端请求),一旦出现故障,你最多丢失1秒的数据.

  • AOF文件是一个只进行追加的日志文件,所以不需要写入seek,即使由于某些原因(磁盘空间已满,写的过程中宕机等等)未执行完整的写入命令,你也也可使用redis-check-aof工具修复这些问题.

  • Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写: 重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。 整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。 而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。

  • AOF 文件有序地保存了对数据库执行的所有写入操作, 这些写入操作以 Redis 协议的格式保存, 因此 AOF 文件的内容非常容易被人读懂, 对文件进行分析(parse)也很轻松。 导出(export) AOF 文件也非常简单: 举个例子, 如果你不小心执行了 FLUSHALL 命令, 但只要 AOF 文件未被重写, 那么只要停止服务器, 移除 AOF 文件末尾的 FLUSHALL 命令, 并重启 Redis , 就可以将数据集恢复到 FLUSHALL 执行之前的状态。

缺点
  • 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。

  • 根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。 在一般情况下, 每秒 fsync 的性能依然非常高, 而关闭 fsync 可以让 AOF 的速度和 RDB 一样快, 即使在高负荷之下也是如此。 不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。

工作原理

AOF 重写和 RDB 创建快照一样,都巧妙地利用了写时复制机制:

  • Redis 执行 fork() ,现在同时拥有父进程和子进程。
  • 子进程开始将新 AOF 文件的内容写入到临时文件。
  • 对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾,这样样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。
  • 当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。
  • 搞定!现在 Redis 原子地用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。

发布订阅

事件机制

事务

高可用、可拓展

应用实践

参考链接

本文由作者按照 CC BY 4.0 进行授权

MySQL8 搭建主从复制集群

CentOS 7.9 搭建 Jenkins 服务